3. Полупроводниковый диод. Температурная зависимость

  Зависимость параметров полупроводникового (ПП) диода довольно ощутима, поскольку материал из которого он сделан довольно охотно увеличивает количество свободных носителей заряда под действием светового потока, температуры, рентгеновского излучения и т. д. А это, в первую очередь, влияет на электрическую проводимость этого самого материала. Если взять два различных полупроводника, допустим германий (Ge) и кремний (Si), то при одинаковом повышении их температуры, проводимость германия будет увеличиваться существенно больше, чем у кремния. С чем это связано. Существует такой параметр, как ШИРИНА ЗАПРЕЩЕННОЙ ЗОНЫ, измеряется в электрон-вольтах (эВ). Он показывает, какое количество энергии нужно придать носителям заряда, чтобы они перешли из валентной зоны, в зону проводимости. В валентной зоне, носитель заряда не может участвовать в протекании эл. тока, поскольку он "связан" с ядром атома, но когда мы извне придаем ему энергию, допустим в виде тепла, он отрывается от атома и блуждает в кристаллической решетке материала. Так появляется свободный носитель заряда. У германия, ширина запрещенной зоны меньше, чем у кремния (0,7 эВ против 1,1 эВ), то есть носителям заряда в валентной зоне германия нужно придать меньше энергии для высвобождения. Вот почему при одинаковой высокой температуре, германий будет лучше проводить ток.

  Зависимость напряжения отпирания диода от температуры

  Что характерно для ПП диода, его напряжение отпирания практически линейно зависит от температуры в диапазоне от -55...+125ºC, убывая с ростом температуры приблизительно на 1,7 мВ на каждый градус (на практике). При этом, вольт-амперная характеристика имеет такой вид:
  При увеличении температуры, вольт-амперная характеристика смещается левее по графику, причем, форма кривой практически не изменяется. Давайте убедимся в вышесказанном, с помощью симулятора эл. цепей. Для этого, подключим к диоду источник тока, пропустив через него ток величиной 1 Ампер, подключив к нему вольтметр для мониторинга его напряжения отпирания при заданном токе и температуре диода, равного 27°С:
  Как видно из рисунка, для данного диода величина порога отпирания составляет 681 мВ при заданном токе и температуре. Давайте поднимем температуру до 127°С и посмотрим что получится:
  Напряжение отпирания снизилось до 508,4 мВ. То есть оно изменилось на 172,6 мВ (681-508,4). Поскольку, как было сказано выше, температурная зависимость практически линейна, можем узнать изменение напряжения на один градус: 172,6/100=1,726 (мВ). Выше было описано, что напряжение отпирания убывает с ростом температуры приблизительно на 1,7 мВ. Как видите, данные практически совпадают.

  Зависимость  тока диода в обратном включении от температуры

  Поскольку количество свободных носителей заряда с ростом температуры в диоде увеличивается, естественно, ток в обратном включении также будет повышаться. Давайте сразу перейдем к эксперименту. Подключим этот же диод в обратном включении к источнику напряжения величиной 12 Вольт последовательно с амперметром, и зададим температуру диода 27°C:

  Ток относительно мал и составляет 0,156 микроампер. Теперь увеличим температуру на 100°C, что при этом изменилось:
 Величина тока значительно возросла и теперь составляет 154,4 микроампер (практически в 1000 раз!). Но все же, обратный ток такой величины довольно мал относительно прямых токов, где их величина составляет единицы и десятки ампер, так что это не особо повлияет на работоспособность электрических схем с участием диодов, кроме редких случаев.


Популярные сообщения из этого блога

4. Полупроводниковый диод. Дифференциальное сопротивление в прямом включении

5. Быстродействие полупроводникового диода. Чем оно определяется